不重复的幂
作者:Gerhard R
https://projecteuler.net/problem/29
考虑 a^b 的所有整数组合,其中 2 ≤ a ≤ 5 且 2 ≤ b ≤ 5
2^2=4, 2^3=8, 2^4=16, 2^5=32 3^2=9, 3^3=27, 3^4=81, 3^5=243 4^2=16, 4^3=64, 4^4=256, 4^5=1024 5^2=25, 5^3=125, 5^4=625, 5^5=3125
如果将它们按数字顺序排列,并删除任何重复项,我们将得到以下 15 个不同项的序列
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
对于 2 ≤ a ≤ 100 且 2 ≤ b ≤ 100,a^b 生成的序列中有多少个不同的项?
源代码: prob029-gerdr.pl
use v6; # compute number of unique powers a**b with bases \a in range 2..A # and exponents \b in range 2..B sub count-naively(Int $A, Int $B) { +(2..$A X=> 2..$B).classify({ .key ** .value }) } sub count-smartly(Int $A, Int $B) { my (%powers, %count); # find bases which are powers of a preceding root base # store decomposition into base and exponent relative to root for 2..Int(sqrt $A) -> $a { next if $a ~~ %powers; %powers{$a, $a**2, $a**3 ...^ * > $A} = $a X=> 1..*; } # count duplicates for %powers.values -> $p { for 2..$B -> $e { # raise to power \e # classify by root and relative exponent ++%count{$p.key => $p.value * $e} } } # add +%count as one of the duplicates needs to be kept return ($A - 1) * ($B - 1) + %count - [+] %count.values; } sub cross(@a, @b) { @a X @b } sub dups(@a) { @a - @a.uniq } sub count-feedly(Int $A, Int $B) { 2..Int(sqrt $A) \ ==> map -> $a { ($a, $a**2, $a**3 ...^ * > $A) Z=> ($a X 1..*).tree } \ ==> reverse() \ ==> hash() \ ==> values() \ ==> cross(2..$B) \ ==> map -> $n, [$r, $e] { ($r) => $e * $n } \ ==> dups() \ ==> (($A - 1) * ($B - 1) - *)(); } sub bench(|) { my $start = now; my $result = callsame; my $end = now; return $result, round ($end - $start) * 1000; } multi MAIN(Int $N, Bool :$verify, Bool :$feeds) { nextwith($N, $N, :$verify, :$feeds) } multi MAIN(Int $A = 100, Int $B = 100, Bool :$verify, Bool :$feeds) { &count-naively.wrap(&bench); &count-smartly.wrap(&bench); &count-feedly.wrap(&bench); my ($result, $runtime) = ($feeds ?? &count-feedly !! &count-smartly)($A, $B); say $result; printf "expected %u [%ums]\n", count-naively $A, $B if $verify; }